Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available June 3, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available November 20, 2025
- 
            Allyl carboxylates are useful synthetic intermediates in a variety of organic transformations, including catalytic nucleophilic/electrophilic allylic substitution reactions and 1,2-difunctionalization reactions. However, the catalytic 1,3-difunctionalization of allyl carboxylates remains elusive. Herein, we report the first photoinduced, phosphine-catalyzed 1,3-carbobromination of allyl carboxylates, affording a range of valuable substituted isopropyl carboxylates (sIPC). The transformation has broad functional group tolerance, is amenable to the late-stage modification of complex molecules and gram-scale synthesis, and expands the reaction profiles of allyl carboxylates and phosphine catalysis. Preliminary experimental and computational studies suggest a non-chain-radical mechanism involving the formation of an electron donor–acceptor complex, 1,2-radical migration (RaM), and Br-atom transfer processes. We anticipate that the 1,2-RaM reactivity of allyl carboxylates and the phosphine-catalyzed radical reaction will both serve as a platform for the development of new transformations in organic synthesis.more » « less
- 
            null (Ed.)Excited-state catalysis, a process that involves one or more excited catalytic species, has emerged as a powerful tool in organic synthesis because it allows access to the excited-state reaction landscape for the discovery of novel chemical reactivity. Herein, we report the first excited-state palladium-catalyzed 1,2-spin-center shift reaction that enables site-selective functionalization of carbohydrates. The strategy features mild reaction conditions with high levels of regio- and stereoselectivity that tolerate a wide range of functional groups and complex molecular architectures. Mechanistic studies suggest a radical mechanism involving the formation of hybrid palladium species that undergoes a 1,2-spin-center shift followed by the reduction, deuteration, and iodination to afford functionalized 2-deoxy sugars. The new reactivity will provide a general approach for the rapid generation of natural and unnatural carbohydrates.more » « less
- 
            The organic photocatalyst (9-mesityl-10-methylacridinum tetrafluoroborate) in the presence of visible light is used to initiate thiol–ene and thiol–yne reactions. Thiyl radicals are generated upon quenching the photoexcited catalyst with a range of thiols. The highlighted mild nature of the reaction conditions allows a broad substrate scope of the reactants. Relying on this efficient metal-free condition, both thiol–ene and thiol–yne reactions between carbohydrates and peptides could be realized in excellent yields.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
